
United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE 
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS 

P.O.Box 1450
Alexandria, Virginia 22313-1450 
www.uspto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

13/485,246 05/31/2012 Muthian George 83012742 9107

56436 7590 11/28/2016
Hewlett Packard Enterprise 
3404 E. Harmony Road 
Mail Stop 79 
Fort Collins, CO 80528

EXAMINER

TRAN, LOC

ART UNIT PAPER NUMBER

2155

NOTIFICATION DATE DELIVERY MODE

11/28/2016 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the 
following e-mail address(es):
hpe.ip.mail@hpe.com 
mkraft@hpe.com 
chris. mania @ hpe. com

PTOL-90A (Rev. 04/07)



UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Ex parte MUTHIAN GEORGE and SONG WANG

Appeal 2016-000814 
Application 13/485,246 
Technology Center 2100

Before BRUCE R. WINSOR, DANIEL N. FISHMAN, and 
AARON W. MOORE, Administrative Patent Judges.

MOORE, Administrative Patent Judge.

DECISION ON APPEAL



Appeal 2016-000814 
Application 13/485,246

STATEMENT OF THE CASE

Appellants1 appeal under 35 U.S.C. § 134(a) from a Final Rejection of 

claims 1—20, which are all of the pending claims. We have jurisdiction 

under 35 U.S.C. § 6(b).

We reverse.

THE INVENTION

The application is directed to “[djata loading with user defined 

functions.” (Abstract.) Claim 1, reproduced below with a disputed 

limitation in italics, is exemplary:

1. A system for data loading comprising: 

at least one hardware processor;

a structured query language (SQL) compiler executed by the 
at least one hardware processor to:

identify a call to a table valued user defined function 
within a SQL statement that includes an insert statement, 
wherein the table valued user defined function is to retrieve 
data directly from an external data source,

identify metadata associated with the table valued user 
defined function,

validate and resolve a subclass type of the table valued 
user defined function based on the metadata and the insert 
statement, wherein the subclass type is one of a plurality of 
subclass types defined for the table valued user defined 
function, and

generate a data loading plan to retrieve and load the data 
from the external data source into a table of a loading database

1 Appellants identify Hewlett-Packard Development Company, LP as the 
real party in interest. (See App. Br. 1.)

2



Appeal 2016-000814 
Application 13/485,246

based on the subclass type of the table valued user defined 
function; and

a data loading engine in the loading database to execute the 
data loading plan generated by the SQL compiler, the data 
loading plan including the table valued user defined function to 
retrieve data from the external data source, and load the retrieved 
data into the table of the loading database in accordance with the 
data loading plan.

THE REFERENCES

The prior art relied upon by the Examiner in rejecting the claims on 

appeal is:

Navas et al.

Friedman et al. 

de Castro Alves et al. 

de Castro Alves et al.

US 2005/0228794 Al 

US 2010/0241646 Al 

US 2011/0161352 Al 

US 2011/0161356 Al

Oct. 13, 2005 

Sept. 23, 2010 

June 30, 2011 

June 30, 2011

Qiming Chen et al., Efficiently Support MapReduce-like Computation 
Models Inside Parallel DBMS, IDEAS ’09, pp. 43-53 (ACM 2009) 
(“Chen IDEAS”)

Qiming Chen and Meichun Hsu, Data-Continuous SQL Process Model, 
Lecture Notes in Computer Science 5331, On the Move to Meaningful 
Internet Systems: OTM 2008, pp. 175—192 (2008) (“Chen OTM”)

THE REJECTIONS

1. Claims 1, 9—11, 13—15, and 20 stand rejected under 35 U.S.C.

§ 103(a) as unpatentable over de Castro Alves ’352 and Chen IDEAS. (See 

Final Act. 2—10.)

2. Claim 2 stands rejected under 35 U.S.C. § 103(a) as 

unpatentable over de Castro Alves ’352, Chen IDEAS, and Navas. (See 

Final Act. 10—11.)

3



Appeal 2016-000814 
Application 13/485,246

3. Claims 3, 4, 6, 8, and 16—19 stand rejected under 35 U.S.C.

§ 103(a) as unpatentable over de Castro Alves ’352, Chen IDEAS, and Chen 

OTM. (See Final Act. 11-14.)

4. Claim 5 stands rejected under 35 U.S.C. § 103(a) as 

unpatentable over de Castro Alves ’352, Chen IDEAS, and de Castro Alves 

’356. (See Final Act. 14—15.)

5. Claim 7 stands rejected under 35 U.S.C. § 103(a) as 

unpatentable over de Castro Alves ’352, Chen IDEAS, Chen OTM, and 

Friedman. (See Final Act. 16—17.)

6. Claim 12 stands rejected under 35 U.S.C. § 103(a) as 

unpatentable over de Castro Alves ’352, Chen IDEAS, and Friedman. (See 

Final Act. 17—18.)

ANAFYSIS

The Examiner rejected claim 1 as obvious in view of de Castro Alves

’352 and Chen IDEAS, finding the disputed limitation—“validate and

resolve a subclass type of the table valued user defined function based on the

metadata and the insert statement”—in Chen IDEAS:

Chen et al disclose to “validate and resolve a subclass type of the 
table valued user defined function based on the metadata and the 
insert statement, wherein the subclass type is one of a plurality 
of subclass types defined for the table valued user defined 
function” in section 4.3 (“several data structures are provided by 
sub-classing the corresponding ones in query executor ... the 
“handle of RVF Execution (hFE) keeps track, at a minimum, the 
information about input/output relation arguments: schema, 
values (as C array), return mode, result set ... it is noted that 
“information about input/output relation arguments” is metadata; 
the “hFIC” is used to control the execution of the RVF and has a 
pointer to the hFE as to validate subclass type based on metadata

4



Appeal 2016-000814 
Application 13/485,246

in which the “return mode” has subclass type of TUPLE_MODE 
and SET_MODE (section 4.1, “Return mode” bullet)).

(Final Act. 4—5, emphasis omitted.)

Appellants argue that “Chen says nothing whatsoever about validating

and resolving the ‘TUPLE_MODE’ and ‘SET_MODE’ (i.e., the asserted

subclass type).” (App. Br. 11.) The Examiner answers “by referring to

Chen section 4.1 (‘Return mode’ bullet), in which the return mode is being

validated in order to return one row of data at a time or multiple rows at a

time.” (Ans. 20.) Appellants respond that “[f]irst, the ‘Return mode’ bullet

section of Chen says nothing whatsoever about the return mode being

validated” and “[s]econd, Chen says nothing whatsoever about the ‘return

mode’ being validated based on the ‘INSERT INTO’ statement in the

example query shown in section 5.1 of Chen.” (Reply Br. 4.)

In its entirety, the “Return mode” bullet of Chen IDEAS reads as

follows:

Return mode. Conceptually an RVF return a relation, or tuple- 
set. There are currently two return modes: TUPLE_MODE for 
returning one tuple-per-call in multiple calls, once for each input 
tuple, and SET_MODE for returning the entire tuple-set in a sin
gle call. With the TUPLE_MODE, there exist multiple NOR- 
MAL_CALLs, each generates one output tuple; with the 
SET_MODE, a single NORMAL_ CALL generates the entire 
output relation. The resulting tuples are kept in a tuple-store be
fore returning.

(Chen IDEAS at 48.) We conclude that the Examiner has not provided a 

sufficient explanation of how this passage, which essentially just describes 

the types of RVF return modes, teaches or suggests “validating] and 

resolv[ing] a subclass type of the table valued user defined function based on 

the metadata and the insert statement” and, therefore, we do not sustain (a)

5



Appeal 2016-000814 
Application 13/485,246

the rejection of claim 1, (b) the rejections of independent claims 14 and 15, 

which include analogous limitations, or (c) the rejections of dependent 

claims 2—13 and 16—20, all of which also contain such limitations. As this 

issue is dispositive, we do not reach Appellants’ other arguments.

DECISION

The rejections of claims 1—20 are reversed.

REVERSED

6


